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Figure 1. An overview of CAPturAR workfow. (a) A user conducts daily-life activities wearing a customized augmented reality head mounted device 
(AR-HMD). (b) The user visualizes his/her previous actions with contextual information in AR. The user can select certain context to search for relevant 
actions. (c) The user defnes an event with a human action and several context attributes, and connects it to an IoT function to author a context-aware 
application (CAP). (d) When the event is detected in daily life, the IoT function is automatically triggered. 

ABSTRACT 
Recognition of human behavior plays an important role i
context-aware applications. However, it is still a challenge fo
end-users to build personalized applications that accurately re
ognize their own activities. Therefore, we present CAPturA
an in-situ programming tool that supports users to rapidly a
thor context-aware applications by referring to their previou
activities. We customize an AR head-mounted device wit
multiple camera systems that allow for non-intrusive capturin
of user’s daily activities. During authoring, we reconstruct th
captured data in AR with an animated avatar and use virtua
icons to represent the surrounding environment. With ou
visual programming interface, users create human-centere
rules for the applications and experience them instantly in A
We further demonstrate four use cases enabled by CAPturA
Also, we verify the effectiveness of the AR-HMD and th
authoring workfow with a system evaluation using our pr
totype. Moreover, we conduct a remote user study in an A
simulator to evaluate the usability. 

*Tianyi Wang and Xun Qian contributed equally to this paper. 
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INTRODUCTION 
The concept of ubiquitous computing [77] has been gradually 
substantiated by the rapid growth of the Internet of Things 
(IoT) products [53]. One of the critical differentiators between 
the emerging IoT and the classic telecontrol system is the 
intelligence introduced by IoT’s context-awareness. Under-
standing the context of users and environments empowers the 
smart things to deliver timely and appropriate service without 
explicit interference from users [59]. With the IoTs acting 
as perception units, inferring environmental contexts, such 
as room temperature, lighting, moisture, etc., can be easily 
achieved. Although accurately inferring activity is an essential 
component of an advanced context-aware application (CAP), 
it remains challenging. 

Firstly, human actions are pervasive and spatial. A mean-
ingful action may happen anywhere, such as drinking coffee 
in a living room, doing yoga in a bedroom. Secondly, hu-
man actions can be delicate and complex. An action may 
involve the movement of the human body and both hands, and 
sometimes with objects. Thirdly, human actions are ambigu-
ous and subtle. The intention of an action usually depends 
on relevant context information such as objects, location and 
time. For instance, picking up a cup in the morning and in 
the evening could suggest different intentions, i.e., drinking 
coffee and drinking milk. 
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One way of enabling pervasive human action detection is by 
embedding more advanced sensors into our surroundings, such 
as RFID [9], electric feld [84], acoustic [41], and vision-based 
sensing [36, 57]. However, these sensors are embedded into 
the environment or the objects, which implies the scalability of 
CAPs will be greatly hampered. As an essential complemen-
tary component in IoT, wearable devices provide a promising 
approach to address the pervasiveness of human actions due 
to its always-on and always-with-user nature. Also, the CAPs 
built with wearable platforms are less dependent on the exter-
nal infrastructures, as their perception capabilities are intrinsic. 

Research has shown multiple non-vision approaches for action 
detection [13], but they often suffer from coarse granularity. 
And these methods are usually dedicated to human action de-
tection, which may fail in cases of human-object interactions. 
Computer vision, on the other hand, is more accessible as a 
general human activity detection method. Moreover, to in-
corporate the challenge of pervasiveness, we need a wearable 
platform for the sensors. In particular, the emerging AR head 
mounted devices (AR-HMD) offer rich environmental sensing 
capabilities, including 6 degrees of freedom (DOF) tracking 
and an egocentric vision system that provides high-quality data 
for accurately inferring the delicate human-object interactions. 

With a large amount of data, the computer vision commu-
nity has made great progress on human action detection with 
pre-trained models [24, 86, 47]. But, when it comes to human-
object interactions, users’ spontaneous and diverse activities 
which are highly context sensitive, can easily invalidate a gen-
eral model. Besides, the end-users can better disambiguate and 
interpret the contexts from their recorded actions[20, 8]. As 
an always-on wearable in the future, AR-HMDs have strong 
potentials for end-users to record their intentional and uninten-
tional activities [58, 52] in a human-centered way. 

Furthermore, compared to a traditional GUI, users directly 
experience the advantages of in-situ visualization of human 
activities through virtual human avatars and replicas of the 
objects in AR [11, 48]. An AR authoring interface allows users 
to intuitively view their previous actions and precisely label 
the desired motions for training. Moreover, users can freely 
walk around in the authoring AR scene and perform spatial 
interactions with the replicas of ordinary objects and IoTs [31, 
33, 22]. This way, users can easily associate the motions with 
relevant context information from the environment and IoTs. 

To this end, we propose CAPturAR, an AR authoring work-
fow, which allows users to record their daily activities, revisit 
the recorded scenarios, create and improve their personal con-
text models, then build and deploy their own customized CAPs 
onto AR-HMD platforms. We demonstrate our workfow with 
a video-see-through AR-HMD modifed with an additional 
downward-looking fsheye camera (Figure 1). Together with 
the front depth camera, we are able to reconstruct the 3D pose 
of the user’s upper body and detect hand-object interactions 
in real-time. Wearing this device while conducting daily ac-
tivities, users’ moving trajectories, body actions, and hand 
interactions will be captured and associated with the map of 
the environment. In the authoring stage, the recorded scenarios 
are represented by an avatar and virtual replicas of the objects 

in AR. We design the interface of CAPturAR to allow fast 
navigation through the timeline and precise selection of the 
activity clips from the cluttered recordings. Then, based on 
users’ understanding of their past behaviors, they interpret the 
selected demonstration clips as contexts and generate detec-
tion models with the motion data. Users can also designate 
necessary contextual information (e.g., time, location, objects) 
to disambiguate the activities. Further, users test human action 
detection performance and refne the context models through 
iterations. After users are satisfed with the detection perfor-
mance, they can design the rules of the CAPs using our spatial 
programming interface in AR. After authoring, users can ex-
perience the functions of the CAPs instantly. In summary, we 
highlight our contributions as follows. 

• An all-in-one workfow for creating human-involved con-
text models using end-users’ realistic daily activities, and 
authoring customized CAPs in AR. 

• An integrated AR-HMD platform composed of multiple 
camera systems supporting non-intrusive recording of end-
users’ activities and context detecting while running CAPs. 

• An AR authoring interface for browsing, selecting and 
editing previous activities, and creating fexible CAPs 
through spatial interaction and visual programming. 

RELATED WORK 

End-user Programming for Context-aware Applications 
We focus on allowing end-users to defne the contextual in-
formation and the desired task-relevant service [19] in a clear 
and intuitive manner. Towards this goal, an "if...then..." rule-
based approach, namely trigger-action programming, is widely 
adopted. Many end-user programming interfaces are proposed 
to support fuent authoring of rule-based CAP. In a typical 
IFTTT fow [34, 76], users directly fll in a "if <this> then 
<that>" sentence with IoT related events to create a trigger-
action pair. Alternatively, iCap [21] provided a GUI for end-
users to defne the trigger-action events through sketches and 
descriptions. To make the authoring process easy to under-
stand, visual programming interfaces are implemented by sub-
stantiating events to visual representations such as icons and 
arrows [18, 65, 3], magnets [75], and jigsaws [32, 17]. Further, 
to provide an in-situ and spatial-aware authoring experience, 
researchers proposed tangible interfaces [7, 16, 44, 46]. By 
simply interacting with the IoTs, users can record their actions 
and create CAP based on the records. 

Most of the proposed end-user programming interfaces are 
device-centered and limited to IoT-only interactions. Human 
actions, however, are not well supported in such interfaces 
mainly due to the lack of capabilities to detect and visualize 
human actions. CAPturAR supports always-on activity detec-
tion and enables end-users to customize sophisticated context 
models. We also expand the scope of human interactions with 
specialized IoT devices [45, 83, 67] to daily ordinary objects. 
Further, as an AR authoring tool, CAPturAR supports users to 
visually program the rules in-situ by spatially connecting the 
contexts with IoT functions. 
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Authoring through Embodied Demonstration 
The embodied demonstration allows users to use shape, posi-
tioning, and kinematics of their bodies as spatial references and 
create complex and dynamic content intuitively. Researchers 
have applied embodied demonstrations in interactive 3D mod-
eling [39, 43, 82], instant creation of stories and animations 
[27, 30, 66, 54], and generating realistic tutorials [10, 15, 28]. 
Recently, GhostAR [11] proposed a workfow where end-users 
program human-robot collaboration tasks using their demon-
strations as space-time reference while Porfrio et al. [62] used 
human-human interactions as the demonstration to program 
human-robot interactions. 

Further, embodied demonstrations have been leveraged to cus-
tomize gestures or action detection algorithms. Lv et al. [50, 
51] enabled end-users to design multi-touch gestures on tablets. 
ACAPpella [20] allowed users to interact with multiple sensors. 
Exemplar [29] and M.Gesture [38] supported rapid iteration 
and fne-tune of the gestures after the demonstration, while 
MAGIC [5] enabled users to build a classifcation algorithm 
by acting multiple gestures. Most of such works employed 
a typical workfow of demonstrate-edit-test. Namely, users 
frst demonstrate the action, edit or label the captured data 
using a GUI, then perform the actions again to test the classi-
fer. And users may have to go through the steps repeatedly to 
generate more demonstrations and improve the performance. 
Thus, such workfow works best for intentional and short ges-
tures. CAPturAR focuses on capturing arbitrarily long-lasting 
human actions in daily life which include both unintentional 
and intentional patterns. Instead of acting the demonstrations 
one by one, CAPturAR provides rapid browsing and selection 
of desired actions from the cluttered and lengthy recordings. 
Moreover, we assist users to identify similar patterns by apply-
ing a pattern recognition algorithm to the entire record. Then, 
users can refne the action recognition algorithm by simply 
labeling the false positive and the true positive samples. 

Human Action Detection in Smart Environment 
As an enabling technology to achieve context-aware com-
puting, human action detection has been extensively studied. 
Various types of sensors are developed to detect human ac-
tion following either an environmental or wearable approach. 
Researches have experimented with multiple technologies for 
sensors deployed in the surroundings or on the objects, such as 
fducial markers [14], RFID [60, 45], capacitive sensing [55, 
67], electric fled sensing [84], vibration and sound detection 
[85, 41]. Recently, Sozu [83] also presented detecting activ-
ities by harvesting energy fow. Nonetheless, these methods 
require users to be close to the sensors or to interact with them. 
And the cost of deploying and maintaining the environmental 
sensors is usually high. On the other hand, wearable sensors 
can monitor human action continuously in an unobtrusive way. 
Typical wearable sensors includes accelerometers [42, 35, 2], 
GPS [63, 4] and biosensors [80, 68]. However, these sensors 
are not suitable for detecting complex and delicate motions. 
Also, in some cases, wearable sensor outputs are fused with 
other sources of information to achieve accurate detection. 

Meanwhile, vision-based approaches are proposed by in-
stalling cameras in the environment [81]. Further, researchers 

use egocentric wearable cameras to detect human actions [61, 
73, 23, 37, 49]. By sharing the same view with users, egocen-
tric cameras capture the user’s hand movements and detect 
the involved objects, which allows for accurate detection of 
complex context. More importantly, instead of using a front-
looking camera, Xu et al. [79] and Tome et al. [74] used a 
downward-looking fsheye camera that covers humans’ limbs. 
Thus the 3D human poses can be retrieved without carrying ex-
tra hardware, which allows users to freely conduct daily activi-
ties. Inspired by these works, we build a customized AR-HMD 
with multiple camera systems to empower the context-aware 
human action detection. 

CAPTURAR SYSTEM DESIGN 

Integrated AR-HMD Platform 
We customize an AR-HMD that enables human and context 
perception for CAPturAR. Our prototype is composed of a 
VR headset, a forward-facing stereo camera, and a downward-
looking fsheye camera as shown in Figure 2 (a). The stereo 
camera is responsible for providing video-see-through AR 
experiences. Also, it is equipped with object detection al-
gorithm that tracks the 3D positions of surrounding objects. 
The fsheye camera covers humans’ limbs within its feld of 
view (Figure 2 (b)), supporting always-on reconstruction of 
the upper-body skeleton in a non-intrusive hands-free manner. 
The reconstructed human skeleton is used for human action 
detection and visualization in the AR authoring interface (Fig-
ure 2 (c,d)). We further detect human-object interactions by 
combining the human skeleton and object detection results. 
Additionally, we obtain the spatial trajectory of the user from 
the 6-DOF tracking supported by the VR headset. 

d

b

c

a

Figure 2. System hardware setup. (a) Customized AR-HMD with a 
stereo camera and a fsheye camera. (b) Fisheye camera view. (c) 

he AR-HMD is connected to a backpack computer. (d) Reconstructed 
upper-body skeleton. 
T

System Walk-through 
We demonstrate the workfow of CAPturAR with a rule-based 
CAP example in the teaser fgure. After getting up in the morn-
ing, a user routinely picks up the cup and goes to the kettle to 
make a cup of hot tea. With CAPturAR, the user can create 
a CAP that automatically turns on the kettle to boil hot water 
as soon as the user picks up the cup in the morning. Before 
authoring a CAP, our system keeps recording the user’s daily 
activities through the AR-HMD (Figure 1 (a)). During the 
authoring, these activities can be reconstructed and visualized 
in-situ using avatar cursor and context attributes (Figure 1 
(b)). The user can select the context attributes of interest to 
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navigate the avatar cursor to the relevant past activities (Fig-
ure 1 (b)). Then the user trims a segment of picking-up action 
using the avatar cursor and includes another context attribute, 
the cup as an event. The event enables CAPturAR to infer 
the user’s intention and trigger an outcome if it happens. To 
improve the precision of the event defnition, CAPturAR of-
fers similar events function during the process. Similar events 
denote the situations where CAPturAR would infer the same 
intention as the authored events. For instance, after defning 
the event as a picking-up and a cup, by browsing the similar 
events, the user fnds out that CAPturAR would mistakenly 
detects a holding-cup action as the same event due to the high 
similarity of the upper-body movement. Thus the user marks 
it as a negative example to avoid false positive detection. Ad-
ditionally, the system would also recognize picking-up a cup 
in the evening as a similar event. It reminds the user to add an-
other context attribute to the event, which is the time attribute, 
morning. As the user is satisfed with the event defnition, 
he/she completes the CAP authoring by connecting it to an 
IoT function, turning-on the kettle, as illustrated in Figure 1 
(c). Back to the user’s life, when he/she picks up the cup in the 
morning again, the kettle will be automatically turned on, as 
shown in Figure 1 (d). To summarize the CAPturAR workfow, 
a user frst fnds and trims meaningful human actions, then 
attaches necessary context attributes to defne events. After 
that, the user verifes the events by labeling the similar events 
nd completes the CAPs by linking the events to IoT functions. 

ramework of CAPturAR 
he framework of our system is illustrated in Figure 3. CAP-

urAR borrows the metaphor from object-oriented program-
ing [78] and substantiates the abstract context information as 
uman actions, context attributes and events. The authoring 
orkfow guides users to defne events with human actions 
nd context attributes, and create CAPs by connecting events 
ith IoT functions. 

 Human Action is a body movement that reveals the user’s 
ntention. In CAPturAR, we represent a human action by 
 sequence of human poses. We let a user defne a human 
ction by trimming a segment of his/her past recorded actions. 

ontext Attributes are descriptors of the surrounding context. 
ey et al. [21] made a summary of the categories to describe 

he context from end-users’ perspectives: activity, object, lo-
ation, time, person, and state. While the activity and person 
re usually used to describe users themselves, we design CAP-
urAR to perceive the following types of Context attributes. 

• Object, the object or IoT involved in the user’s activities. 
• Location, the spatial property of the user. 
• Time, the time of the day. 
• State, the state of IoTs, e.g. light on/off. 

he human actions and the context attributes are recognized by 
he AR-HMD and synchronously saved in a context database, 
o that users can search for human actions by specifying the 
alues of the context attributes and vice versa. 

n Event comprises a meaningful human action and values 
f relevant context attributes. For instance, the user in the 
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CAPturAR system walk through section creates an event 
with a human action of picking-up and two context attributes, 
the object attribute (cup) and the time attribute (morning). 

A Similar Event of an authored event is a segment of the 
context database that holds the same context attribute values 
and similar human actions as the authored one. We introduce 
this function for two purposes. Firstly, similar events illustrate 
all situations where the authored event can be triggered, which 
helps reveal unnoticed constraints and improve the precision 
of the event defnition. Secondly, we allow end-users to label 
the similar events to be negative or positive to improve the 
human action detection algorithm with more samples. 

Event

Model Input: Current Context Status

a

Author

Record

IoT Function
Logic

Connection

Model Output

Compare

b

c

d

Context Database

Figure 3. Framework of CAPturAR. (a) A user conducts daily activi-
ties. (b) The human actions and the status of context attributes are times-
tamped and recorded in context database. (c) The user creates an event 
by grouping the recorded activities and connect it with IoT functions to 
create a CAP. (d) CAPturAR compares the current context status with 
the event. If it happens, the IoT function will be triggered. 

Event Detection and Function Triggering 
As a rule-based authoring system, CAPturAR enables CAPs by 
detecting events. To detect an event, CAPturAR frst acquires 
the current values of the human action and context attributes 
(object, location, etc.) and then compares them with the values 
saved in the event as shown in Figure 3 (c) and (d). The event 
is considered as happening if all these elements match. 

To detect a human action, CAPturAR collects a sequence of 
human poses from the fsheye camera to form the current 
human action, then calculates its Dynamic Time Warping 
(DTW) distance with the one saved in the event. CAPturAR 
assumes the human action of the event happens if the DTW 
distance is below a threshold. Further, if there are multiple 
events, CAPturAR uses the nearest neighbor algorithm to 
decide which one is actually happening. 

For context attributes, CAPturAR considers an object attribute 
as being involved if it is spatially close to one of the user’s 
two hands. Our system uses a fsheye camera to locate the 
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State:
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hot

Inverse

Logic Connection

IoT Functions

Temporal Properties

Delay

Duration

Event NodeLogic Mode

a b

Context Attributes

Event Node

c

Event Mode

Figure 4. The authoring interface of CAPturAR. (a) The user can browse recorded activities in Event Mode by manipulating the avatar cursor. The pill 
bottle with green wireframe is an object attribute set to suggestion for rapid navigation of the avatar cursor. (b) An example event of reading book on sofa 
in the evening (magenta). It includes a human action (avatar clip) and three context attributes (evening, book, location circle). The user can toggle on an 
event menu from the event node to edit the event. (c) An example CAP of "turn on the light when the event is detected" authored in Logic Mode. The user 
connects the authored event from the event node to the turn-on icon of the table lamp with a red arrow. In Logic Mode, the event menu is replaced by the 
temporal property menu for toggling on/off temporal properties of the event. 

hand positions and a front-facing stereo camera to obtain the 
object positions. The location attribute and the time attribute 
can be easily acquired from the 6-DOF spatial tracking and the 
internal clock of the AR-HMD. Meanwhile, the state attribute 
is acquired by communicating with the IoTs. Currently, CAP-
turAR uses simulated IoTs in AR while there is no diffculty 
scaling to real IoTs. 

If a user has labeled similar events, CAPturAR compares the 
current status of the context with all similar events as well as 
the original event and uses a nearest neighbor algorithm. The 
event is detected if the current human action has a small DTW 
distance with any of the positive labeled similar events. In con-
trast, the event will not be considered happening if the current 
human action has a shortest DTW distance with a negative 
labeled similar event. Consequently, the false positive rate can 
be reduced while the true positive rate can be increased. 

When an event is detected, usually the corresponding IoT func-
tions are triggered immediately to deliver timely services. Ad-
ditionally, we introduce three temporal properties of an event, 
namely inverse (triggering while it does not happen), delay 
(triggering after it happened for a while) and duration (trigger-
ing after it keeps happening for a while). Moreover, we allow 
logical connections among multiple events, namely sequen-
tial (triggering only if event B happens after A) and parallel 
(triggering if A or B happens). We embed these capabilities 
in CAPturAR authoring interface to meet the complicated 
requirements of CAPs. 

In-situ Authoring in Augmented Reality 
By leveraging the advantages of AR in in-situ visualization and 
spatial interaction, we are able to build an integrated author-
ing interface that combines low-level operations such as em-
bodied demonstrations, with high-level visual programming 
that creates CAPs with fexible triggering logic. Users au-
thor CAPs through two modes sequentially: Event Mode and 
Logic Mode. In Event Mode, users can browse the recorded 
activities by manipulating the avatar cursor and observing 
the status of context attributes (Figure 4 (a)). Users can set 
the context attributes as suggestions to rapidly navigate the 
avatar cursor within the long-lasting record. Then, users can 

defne events by trimming a consecutive segment of the past 
actions with the avatar cursor and including other necessary 
context attributes (Figure 4 (b)). After creating the events, 
users can verify them by viewing the similar events. Further, 
users enter Logic Mode (Figure 4 (c)) to connect the events to 
IoT functions respectively to create CAPs. Users interact with 
the authoring interface through a VR hand-held controller. In 
the following paragraphs, we describe our UI designs in detail. 

We use spatially distributed AR icons to support interactions 
between end-users and the surrounding contexts. In Event 
Mode (Figure 4 (a,b)), we use wireframed virtual models as 
the object attributes, a clock model as the time attribute, circles 
drawn by users as the location attributes, and hexagonal icons 
located next to the objects as the state attributes. Each of the 
context attributes can be in one of the following three states, 
namely idle state (cyan) when a user has not interacted with 
the attribute, suggestion state (green) when a user sets it as a 
suggestion to see relevant activities, and event state (magenta) 
when a user includes it in an event. In Logic Model, we use 
hexagonal icons located next to the smart things to represent 
IoT functions. 

In Event Mode, we introduce the avatar cursor for conve-
niently browsing, visualizing and editing recorded actions. 
The avatar cursor is an in-situ placed human-avatar (Figure 4 
(a)) that represents the pose of the user at a specifc point of 
time in the past. Just like the cursors in video editing software, 
users can move the avatar cursor forward and backward in 
time domain to replay the recorded actions, while the values of 
all context attributes are synchronously updated and displayed 
as the AR icons. Such synchronization allow us to introduce 
the suggestion function for rapid navigation within the long-
lasting record of previous activities. Instead of searching for 
an action from the context database, users can directly locate 
the avatar cursor to the relevant actions by selecting some 
context attributes as suggestions (Figure 4 (a)). 

To defne a human action in Event Mode, users trim a con-
secutive part of recorded actions using the avatar cursor in 
a hold-and-drag manner as similar as selecting a part of the 
text on PC. The selected human actions are displayed as semi-
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transparent human avatars (Figure 4 (b)). Once a human action 
is selected, an event node and an event menu will be displayed 
above the avatars. Users can select or deselect a context at-
tribute (edit button), fnd similar events in the context database 
(similar button), author another event (next button) or delete 
this event (delete button). The similar events are visualized 
closely to events. The menu of similar event let users to label 
it as a negative (delete button) sample or keep it as a positive 
sample (next button). 

In Logic Mode, we implement a visual programming inter-
face (Figure 4) (c). The context attributes which do not belong 
to any event are hidden, while the event and the icons of the 
available IoT functions are displayed. Users can build logic 
connections between the events and the IoT functions by draw-
ing red arrows in AR to create CAPs. With the arrow metaphor, 
users can either connect one event node with another to im-
plement a sequential logic, or connect multiple event nodes to 
one IoT functions to implement a parallel logic. Additionally, 
the event menu is replaced by the temporal property menu 
where users can toggle the temporal properties (inverse, delay, 
duration) to specify temporal triggering logic. Utilizing the 
temporal and logical relations between events and IoT func-
tions, CAPturAR supports rule-based CAPs as discussed in 
[21] as well as process-driven CAPs as shown in [65]. 

USE SCENARIOS 
With CAPturAR, users can program their actions to create 
context-aware applications and build smart interfaces for their 
surrounding environment. Here we demonstrate four different 
CAPs in household scenarios. 

Augment Everyday Objects 
CAPturAR is aware of the user’s interaction with everyday 
objects. Leveraging the AR interface, users can attach digital 
functions, which can be triggered by their actions, to everyday 
objects. Here, we augment a kettle, a pill bottle and a wipe 
bottle with a timer function, a counter function, and a reminder 
function respectively (Figure 5). 

a b c

Figure 5. Augment everyday objects. (a) The time starts to count down 
when the user turns on the kettle. (b) The number of pills left in the pill 
bottle minus one when the user takes a pill. (c) The wipe bottle reminds 
the user to clean the table when the user stands up. 

Workout Reminder 
The object-oriented authoring interface of CAPturAR enables 
users to manipulate and connect multiple events and build 
CAPs based on a series of related activities. Here a user 
wants CAPturAR to remind him/her to do dumbbell-lifting 
every 30 minutes of reading. As shown in Figure 6, the user 
authors a reading-book event with a temporal property of 30 

minutes duration, and connects to a dumbbell-lifting event 
with an inverse property. The dumbbell-lifting event is further 
connected to a reminder function on the dumbbell. Thus, if the 
user has been reading for 30 minutes, CAPturAR will check if 
he/she has done any dumbbell-lifting. If not, a reminder will 
pop up above the dumbbell. 

After reading for 30 minReading-book 
(Duration)

Dumbbell-
lifting
(Inverse)

Notifier

a cb

Figure 6. Workout reminder. (a) Two sequentially connected events with 
a duration and an inverse temporal properties. (b) The user has to do 
exercise every 30 minutes while reading. (c) The system reminds the 
user if no dumbbell-lifting was detected within the past 30 minutes. 

Sequential Task Tutorial 
Leveraging the realistic visualization of human actions in AR, 
CAPturAR can also create embodied and adaptive tutorials for 
sequential tasks. An instructor wants to demonstrate his/her 
routine task of repairing a bike, so he/she creates a CAP using 
CAPturAR with three sequentially connected events, shaking 
the lubricant, spreading it on the front wheel and then on the 
back wheel. A novice comes and follows the tutorial (Figure 
7). CAPturAR detects once the novice completes a step and 
starts to play the demonstration of the next step. 

a b c d

Figure 7. Sequential task tutorial. When the novice has fnished the 
current steps (a, c), the next steps will be revealed automatically (b, d). 

Tangible AR Game Creation 
CAPturAR makes the user’s surrounding environment a play-
ground that can be interacted with through actions. Here a 
user used to throw cans into a rubbish bin, so he/she creates an 
AR game of basketball shooting as shown in Figure 8. Once 
he/she picks up an empty coke can, CAPturAR attaches a 
virtual basket and a virtual basketball to the rubbish bin and 
the coke can respectively. 

a b

c

d

Figure 8. Tangible AR game creation. As the system detects a shooting 
action (a, c), the authored AR game is activated (b, d). 
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IMPLEMENTATION 

System Hardware and Software Setup 
We build our customized AR-HMD as shown in Figure 2 with 
1) a VR headset (Oculus Rift S [1]) with SLAM embedded, 
2) a front-facing stereo camera (ZED Dual 4MP Camera [72], 
720p, 60fps) for video-see-through AR and object detection, 
and 3) a downward-looking fsheye camera (1080p, 60fps, 
180 deg FOV) attached to the bottom of the VR headset for 
action recognition. The AR-HMD is connected to a backpack 
computer (HP VR Backpack G2, Intel Core i7-8850H, 2.6GHz 
CPU, 32GB RAM, NVIDIA RTX 2080 GPU). The CAPturAR 
authoring interface is developed using Unity3D(2019.2.12f1). 
To interact with the AR authoring interface, we use an Oculus 
Touch controller. 

Retrieve Human Body Pose from Fisheye Camera View 
We built and trained a deep neural network (DNN) to retrieve 
3D body pose from the fsheye camera, as shown in Figure 
9. Due to the limited feld of view of the fsheye camera, we 
only focus on body poses of which hands are below the level 
of head. The DNN comprises two concatenated parts. For the 
frst part we adopt the convolutional pose machine structure 
presented in OpenPose [12] with VGG19 [70] backbone to 
detect 2D locations and orientations of joints in fsheye images. 
For the second part, we use a customized convolutional neural 
network (CNN) to infer the 3D joints positions from 2D. The 
DNN runs on the backpack computer with Tensorfow 2.0 [26] 
at 24Hz. To further convert the joint positions into a realistic 
human avatar, we use FinalIK Unity3D plugin [25]. To train 
the DNN, we used a Kinect Azure [6] to collect ground truth 
data of the 3D joints position. Meanwhile, we took fsheye 
camera images as the training input. The ground truth of 2D 
joints locations and orientations were obtained by projecting 
the 3D joints positions onto the fsheye camera images [56]. 
In total, 170K images were collected from 35 volunteers. The 
two parts of the DNN are trained separately. The frst part took 
24 hours on an NVIDIA 2080Ti GPU, and the second took 12 
hours on the same GPU. 

VGG19
46x46x512 CPM 46x46x34

5x5 conv  x6
46x46x34

23x23x64
12x12x128

6x6x512

4x4 conv
4x4 conv

4x4 conv

Heatmap 
Output

Vectormap
Output

Joint Position 
Output

1024

512

36

Figure 9. Upper-body tracking network structure. 

Detect Interaction with Objects 
To track 3D positions of objects, we frst use the Yolo v3 
[64] implemented in OpenCV for Unity [71] to fnd the 2D 
positions on the RGB image from the ZED stereo camera. 
Then we reproject the 2D position back to 3D using ZED’s 
depth image. Any object which is out of the FoV is assumed 
to be stable. To detect user’s interactions with small, movable 
objects, we measure the distance between the objects and the 
user’s left or right hands and detect interaction if the distance is 
below 10cm. For large and fxed appliances such as lamps, we 
detect interaction whenever the user is close to the appliances. 

Note that the fsheye camera and the ZED have separated 
FoVs. To ensure the detection of both hands and objects, we 
slightly adjust the direction of the fsheye camera to cover 
the ZED’s FoV. We trained the Yolo v3 to detect 15 daily 
objects including a cup, a mug, a kettle, a candy bottle, a 
pill bottle, a book, a tea can, a coke can, a wipes can, a pair 
of pliers, a dumbbell, a bowl, a bottle of hand sanitizer, a 
lamp, a rubbish bin, for study and demo purpose. For each 
object, we collected approximately 2000 images using the 
method mentioned in [40]. Specifcally, we placed virtual 3D 
bounding boxes around the objects in AR and recorded the 
images from the ZED stereo camera. The 3D bounding boxes 
are projected onto images as 2D labels. The training took 12 
hours on an NVIDIA 2080Ti GPU. 

PRELIMINARY SYSTEM EVALUATION 
The CAPturAR workfow relies on the capabilities of the inte-
grated AR-HMD platform, namely upper-body pose tracking, 
human-object interaction, and human action recognition. To 
evaluate these capabilities, we conducted a 3-session prelimi-
nary system evaluation. 

Accuracy of Upper-body Pose Tracking 
Accurate tracking of the human body pose plays an essential 
role in human action detection and virtual avatar reconstruc-
tion. To test the tracking accuracy of our customized AR-
HMD, we compared the 3D positions of the 12 upper-body 
joints acquired by the fsheye camera with the results from 
a Kinect Azure camera, which were used as ground truths. 
During the test, the tester performed 10 common movements 
such as picking up, putting down, and reaching out with both 
hands continuously while the data samples were collected at 
4Hz automatically. Figure 10 (a) demonstrates four exam-
ple sets of model inputs and outputs during the test. Three 
researchers participated in this test and collected 825 data sam-
ples in total. Then, we calculated the distances of all 12 joint 
positions between the ground truths and the model outputs, 
as shown in Figure 10 (b). The average position error was 
4.34cm (SD = 3.59cm). Typically, pelvis and both hands pro-
duced larger errors since those joints were far from the pivot 
and had larger movements. The left hand produced the largest 
error, 8.56cm (SD = 5.58cm) which was still smaller than half 
of an adult’s palm. Thus, the customized AR-HMD has a 
similar tracking ability as Kinect Azure and can satisfy the 
requirements of tracking human upper-body actions precisely. 

a Mean Joint Position Error (cm)

Spine

Arms

b

Figure 10. Test of upper-body pose tracking using a fsheye camera. (a) 
Examples of human poses, joint heatmaps overlayed on the fsheye im-
ages, and 3D reconstructions of the joints (red lines: predictions, blue 
lines: ground truths). (b) Mean joint position error of different joints. 
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Accuracy of Human-object Interaction Detection 
We aimed to test the accuracy of detecting human-object inter-
actions in temporal and spatial domains by measuring two sets 
of values, 1) start and end time of each interaction and 2) the 
average distance between the object and the hand during the 
interaction. We included six objects in the experiment. Figure 
11 (a) shows the frst-person view of the tester. During the test, 
the tester picked up an object, interacted with the object for ap-
proximately 10 seconds, then put the object back, and repeated 
the process with other objects. The test was performed three 
times by three researchers respectively. Regarding the ground 
truth of the interaction time, we recorded the egocentric view 
of the tester and retrieved the time from the video. Totally, 
18 interactions (three interactions with each object) and 36 
start and end times (six for each object) were recorded. We 
present the result in Figure 11 (b). The average interaction 
time error was 0.42s (SD = 0.14s) and average hand-object 
distance during the interaction was 4.68cm (SD = 2.40cm). 
The results indicate that CAPturAR can detect human-object 
interactions accurately both in time and space domains, which 
supports the realistic reconstruction and visualization of the 
interactions, i.e. an object moving with the avatar’s hand. 

a Mean Interaction Time Error (s)

Mean Interaction Distance Error (cm)

b

Figure 11. Test of human-object interaction detection. (a) Experiment 
setup. (b) Mean time error of interaction start and end time (top), and 
mean distance error between the hand and the objects (bottom). 

Performance of Human Action Recognition 
CAPturAR detects the happening of a human action by ap-
plying DTW distance and nearest neighbor algorithms to the 
real-time human pose sequence acquired by the fsheye camera. 
To quantify the performance of this method, we applied it to a 
classifcation task with 10 daily actions as listed in Figure 12. 
A tester repeated each action for 10 times. We equally divided 
the samples into two sets and applied a 2-fold cross-validation 
method to calculate the classifcation accuracy. We present 
the result as a confusion matrix in Figure 12. The overall clas-
sifcation accuracy was 89%, which validated the feasibility 
of our system in accurately recognizing human actions back 
in daily life. Additionally, using advanced skeleton-based 
action-detection algorithms such as [69] may further improve 
the robustness. 

Pick up the object with both hands.
Manipulate the object with both hands.
Put down the object with both hands.
Reach out both hands.
Pick up the object with right hand.

Put down the object with right hand.
Hold the object with right hand.
Pick up the object with left hand.
Put down the object with left hand.
Hold the object with left hand.

1.0

0.8

0.6

0.4

0.2

0

Figure 12. Confusion matrix of the human action classifcation accuracy. 

REMOTE USER STUDY 
Complying with the requirements of social distancing, we 
conducted a remote user study to evaluate the user experience 
of the CAPturAR authoring interface. Since the remote users 
had no access to the AR-HMD, we developed an AR simulator 
on PC where the view of the AR-HMD was fxed as shown 
in Figure 13. Also, we mapped the handheld controller op-
erations to the mouse for the interactions by clicking the red 
buttons shown in Figure 13. 

We invited 12 users (7 males and 5 females, whose ages range 
from 21 to 30) to participate in a two-session remote user study. 
7 out of 12 users have AR/VR experience, and 8 out of 12 
users own commercial IoT products such as smart light bulbs 
and smart speakers. None of the users had experience with our 
system before the user study. The study took a consecutive 
1.5 hours and each user was paid 10 dollars for compensa-
tion. During the study, each user ran the software on his/her 
computer, shared the screen, and communicated with the re-
searchers through online calls. The entire study processes were 
screen- and voice-recorded for post-study analysis. After every 
session, each user completed a survey with object Likert-type 
(scaled 1 to 5) questions, targeting on the level of agreement 
towards the using experience of the system features. After all 
sessions were fnished, each user took a conversation-type in-
terview to provide subjective feedback and fnished a standard 
System Usability Scale (SUS) questionnaire (P=Participant). 

We asked the users to author CAPs using pre-recorded ac-
tivities generated by one of the researchers performing daily 
activities while wearing the AR-HMD (Figure 13 (b)). To-
tally, 14 daily activities were included in the recorded actions, 
such as reading books, having meals and drinking coffee. All 
the activities happened in a 6 meters by 6 meters household 
environment. The total length of the record is around 20 min-
utes. Some of the activities were repeated multiple times. To 
evaluate the authoring correctness, we prepared test records 
happened in the same environment. In each test record, some 
activities satisfed the authored events while some did not. Af-
ter the user completed a CAP, we loaded the corresponding 
record to test whether the CAP was properly activated. To 
quantify the authoring accuracy, we counted the numbers of 
true positive detection (TP), false positive detection (FP) and 
false negative detection (FN) during the tests and calculated 
the F1 score (2T P/(2T P+FP+FN)) (true negative (TN) was 
not available in our case). 

Figure 13. The semi-AR user interface for remote user study. 
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Table 1. Descriptions of the user study tasks. 
CAP Events Logic Connections and Functions 

1 Taking pill. Pill count of the pill bottle minus 1. 
2 Having meal. Turn on the music player. 

3 (a) Drinking coke. 
(b) Throwing the coke can. 

(a) ˇCoke count plus 1. 
(b) ˇShow me a reusable icon above the trash can. 

4 (a) Reading a book on the dining table. 
(b) Reading a book on the sofa. 

(a) ˇTurn on the foor lamp. 
(b) ˇTurn on the table lamp. 

5 (a) Having meal (with Delay 30 minutes). 
(b) Taking pill (with Inversion). 

(a) ˇ(b) 
(b) ˇPush a notifcation on the pill bottle. 

6 
(a) Drinking coffee. 
(b) Coffee count on the coffee machine = 2. 
(c) Lifting the dumbbell (with Inversion). 

(a) ˇCoffee count on the coffee machine plus 1. 
(b) ˇ(c) ˇPush a notifcation on the dumbbell. 

Session 1: Event Defnition Precision 
In this session, we tested the usability of CAPturAR in pre-
cisely defning human involved events with two of our core fea-
tures, similar event, and adding context attributes. The users 
were asked to create two events and author two simple CAPs re-
spectively (CAP 1 and 2 in Table 1). For each event, users cre-
ated it in three progressively detailed ways, 1) only selecting 
a human action as the event (Motion-Only-No-Verifcation), 
2) after creating the event, labeling the similar events to be 
positive or negative (Motion-Only-With-Verifcation), and 3) 
after labeling, adding the relevant context attributes to the 
events (Motion-Object-With-Verifcation). After each trial, we 
loaded the corresponding test record and counted the num-
bers of TP, FP and FN. To challenge our authoring system, 
we deliberately recorded highly comparable movements, such 
as taking-pill versus drinking-water or reading-book versus 
having-meal, in the same test record. 

Result and discussion. All 12 users completed the authoring 
processes. The result is illustrated in Figure 14. By labeling 
the similar events, the F1 scores of the two tasks greatly in-
creased (T1: from 50.50% (SD=0.13) to 83.33% (SD=0.08), 
T2: from 75.63% (SD=0.12) to 92.22% (SD=0.12)), mainly 
because of the signifcant decrease of the FP detection. The 
result implied that the similar event feature enabled the users 
to better characterize the human actions and help improve 
the algorithm. Moreover, after adding object attributes to the 
events, the precision of the two tasks increased (T1: from 
83.33% to 97.22% (SD=0.10), T2 from 92.22% to 98.33% 
(SD=0.06)), which revealed the importance of associating hu-
man actions with other context information. Generally, the 
users were able to precisely defne events using the similar 
event and the context attribute features we designed. 
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Figure 14. Event defnition precision result 

Session 2: Overall Usability 
In this session, we aimed to test the overall usability of CAP-
turAR authoring interface with more complex CAPs (CAP 3-6 
in Table 1). Each CAP contained 2-3 events and 1-2 IoT func-
tions. Specifcally, CAP 3 had two events with same object 
attribute (coke) but different human actions (drink and throw). 
CAP 4 had two events sharing one single activity (reading 

book) but happening at different locations (at the table versus
on the sofa). CAP 5 required temporal properties (inverse and
delay). CAP 6 was a comprehensive task with three events. 

Result and discussion. All 12 participants successfully com-
pleted the authoring tasks. The average detection precision of
the four tasks were 94.44% (SD=0.13), 97.22% (SD=0.10),
91.67% (SD=0.29) and 97.22% (SD=0.10), which indicated
that after a short training process, most users were able to
successfully author CAPs using our system. 

The system feature related Likert-type ratings collected from
the 2-session study are shown in Figure 15. In general, after
the tutorial, the participants were confdent to author human
action dependent CAPs using our system and agreed with the
intuitiveness and smoothness of our system workfow (Q8:
AVG=4.42, SD=0.90). “The event mode and the logic mode
are closely integrated. I can easily defne an event, and connect
it to a smart function. (P7)” Meanwhile, the majority of the
users appreciated the clear view during the authoring process
(Q10: AVG=4.42, SD=0.90). “I like the design of replaying
the avatar when I hover on the Event icon but displaying it
when I start authoring. It represents the elements clearly and
won’t distract me. (P1)” 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The avatar representation is accurate and 
easy to understand (Q1) 

The three suggestion methods help me 
rapidly navigate the avatar cursor (Q2) 

It’s straightforward to define an event (Q4)

It’s intuitive to define a human action by 
trimming the clip (Q3)

It’s necessary to verify the event definition 
with similar actions (Q5)

It’s coherent to author logic and functions 
using arrowed lines (Q6)

The temporal and logic properties cover my 
frequent needs (Q7) 

The authoring workflow is easy to follow (Q8)

The avatar visualization is necessary 
throughout the authoring process (Q9)

The visual design is explicit and clear (Q10)

0   1    2    3    4    5    6    7    8   9  10  11 12
Strongly Disagree Slightly Disagree Neutral Slightly Agree Strongly Agree

Figure 15. Likert-type result after the two-session user study. 

We received positive comments about the visual representa-
tions of the authoring interface. Representing the human move-
ments using the humanoid avatar was receptive by the users 
(Q1: AVG=4.67, SD=0.49). "It’s easy to understand what the 
avatar is doing. I think showing me a digital model of myself 
can remind me of what I did in the past. (P12)" And the uti-
lization of the avatar during the authoring process was highly 
accepted by the users (Q9: AVG=4.75, SD=0.45). “When I 
can see what the avatar did in front of me, it becomes much 
easier and more straightforward to defne a motion I want. 
(P8)” Additionally, defning a human motion by trimming the 
avatar representation was accepted by the participants (Q3: 
AVG=4.50, SD=1.17). “I like the idea of trimming avatar to 
defne an action. And sometimes, I thought I didn’t trim it 
precisely, but the system still successfully detected it. (P2)” 

We also asked the users about the features of CAPturAR au-
thoring interface. The suggestion feature for rapidly brows-
ing history records was welcomed as a decent feature (Q2: 
AVG=4.25, SD=0.75) and most users frequently used sugges-
tions to fnd actions while creating events. “That suggestion 
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feature lets me quickly fnd what I want from the long history. 
Actually, you remind me of using location to fnd the time point 
as well. (P10)” Meanwhile, the participants felt confdent 
of precisely defning an event using context attributes (Q4: 
AVG=4.67, SD=0.49). “In real life, I do need different levels 
of constraints as triggers. Some can be easily triggered, and 
some are very constrained. I appreciate the idea of includ-
ing different attributes in the events. (P5)” Additionally, the 
similar activity feature received complimentary remarks (Q5: 
AVG=4.25, SD=0.87). “I’m very satisfed with the similar 
activity feature. When I can help improve the back-end algo-
rithm of action detection, I feel much more confdent about 
what I just defned. We all know the current techniques are 
still not intelligent enough. (P11)” 

Regarding the experience of authoring CAPs through logic 
connections in Logic Mode, the survey result showed posi-
tive feedback (Q6: AVG=4.08, SD=0.79). “I think using ar-
rowed lines to build logic and IoT functions is very easy to fol-
low. (P6)” And the logic options and the temporal properties 
mostly covered the requirements in daily life (Q7: AVG=4.25, 
SD=0.62). “I am not sure I would use all of the logic connec-
tions in one function, but each of them is defnitely necessary 
in my daily life. Also, I really like the idea of the inverse logic. 
Because I don’t want the system to bother me when I already 
have that thing in mind. (P3)” Last but not least, the standard 
SUS survey result is 80.33 out of 100 with a standard deviation 
of 12.24, illustrating the high usability of our system. 

DISCUSSION AND FUTURE WORK 
Assistance with defning events. Through the user study, all 
users were able to master the CAPturAR workfow of defning 
events. Some users expected more assistance to make this 
process smoother. P4 hoped to get some help while defn-
ing the human actions “When I trimmed a human action, I 
was expecting the system to give me some hints or help me 
decide, especially when the movement is common”. Further, 
P2 mentioned that the system could automatically propose 
the necessary context attributes after she had labeled several 
similar events. "I wonder after I make several decisions with 
this feature, your system may already know what is my inten-
tion and give me some feedback". These comments reveal 
that while CAPturAR emphasizes authoring unique and per-
sonalized actions, it should hold some levels of intelligence 
to help defne events more precisely and rapidly. For future 
improvements, we propose exploring human action detection 
and pattern recognition algorithms to reduce end-users’ load 
and further increase the authoring precision. 

Authoring by real-time demonstration. CAPturAR sup-
ports users to select activities from the past records. Yet, 
some users were curious about whether they could author an 
event by directly acting it out "I think it would also be neces-
sary to defne an event by demonstrating real-time (P5)". It 
reminds us to leverage the human action detection capability 
to include users’ real-time actions in the events or edit the 
recorded human actions by embodied demonstrations. 

Detection performance and effciency. CAPturAR showed 
acceptable performance when detecting the authored events. 
Yet, the DTW algorithm we currently adopt relies on the users’ 

consistency of repeating the actions. Moreover, the time com-
plexity of DTW algorithm is O(nm), which makes it time-
consuming to search for similar events when long human 
actions are selected. Additionally, recording long-lasting and 
high-fdelity human actions (24 FPS with approximately 200 
bytes in each frame) may accumulate to high volume. Thus, 
we are motivated to explore advanced DNN encoders that 
compress the high-fdelity records for faster and more accu-
rate action detection, as well as decoders for realistic avatar 
reconstruction in AR. 

Creating CAPs with multiple users. Technically, CAP-
turAR supports multiple users to share their activities and 
author collaborative CAPs in the same environment. For in-
stance, an IoT function may be triggered if one user is per-
forming an activity while another user is doing something else. 
Or the collaboration of the users may trigger the IoT func-
tions that are different from the ones triggered by single user 
activities. However, privacy may become a problem in such 
cases. Will it be offensive to visualize one user’s activities 
to another user or create CAPs that depends someone else? 
Studies on how to balance between privacy and multi-user 
collaboration could be one of the research directions of future 
CAP authoring tools. 

Bulky hardware setup. In our work, we applied an AR-
HMD, and a backpack computer to handle the context capture 
and action recognition computation. However the mobility of 
end-users is limited due to the size of the devices. We envision 
lightweight HMDs and advanced cloud service in the future to 
remove the bulky setup. 

CONCLUSION 
In this paper, we presented CAPturAR, an all-in-one system 
that allows end-users to create human-involved context-aware 
applications. We discussed the CAPturAR framework of mod-
eling human involved CAPs and adopted a workfow of cre-
ating CAPs by referring to a user’s previous recorded daily 
activities. To achieve this goal, we proposed an integrated AR-
HMD platform for always-on, non-intrusive activity recording 
and context sensing. Further, we developed an AR authoring 
interface for creating CAPs through in-situ visual program-
ming. We have demonstrated four different use cases for smart 
home environments featuring augmenting everyday objects, a 
healthy life application, a sequential task tutorial, and a tangi-
ble AR game. We proved the performance of the AR-HMD 
platform in terms of context-aware human action detection 
with a system evaluation. Within the remote user study, we 
received complimentary feedback on the user experience of 
our authoring interface. Therefore, we believe that CAPturAR 
opens up a new perspective of incorporating human action into 
the context-aware application system and inspires advanced 
smart environment construction. 
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